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Introduction 

This article was originally submitted in April of 2018 and 
published in the August American Laboratory. Since then new 
experiments were run and analyzed using the process 
described; and there has been feedback, both questions and 
suggestions. This updated version of the article includes 
answers to the questions and incorporates many suggestions. 
 
One common suggestion has been to not to use the term 
“Artificial Intelligence”, it is too broad in scope. To address this, 
we are adopting the term “predictive analytics.” Most everyone 
is aware that organizations like Google, Facebook, Amazon, 
etc., collect information on people’s behavior while visiting their 
websites and using their applications. They do this to 
personalize the information presented and match the experience 
to the individual. The process whereby they accomplish this is 
predictive analytics. Companies collect everyone’s data and use 
software that goes through a learning process to predict future 
behavior by comparing each individual’s usage patterns to those 
of thousands to millions of others. Similarly, the software 
process IonField Systems has developed learns the behavior of 
every well through a process of running the identical assay in all 
wells of a microplate and concurrently comparing how each 
individual well performs relative to all other wells within the 
microplate and, eventually, to all wells of every microplate the 
assay has been run in. The data in the original article were 
based on a limited number of these learning cycles, typically 
two. A logical next step is to increase the number of learning 
cycles according to the theory that with more data, the accuracy 
of prediction increases. We are currently working to see how 
much improvement is possible.  
 
One common question is how IonField Systems found 
something that everyone else has missed. In talking with many 
scientists, we have come to the conclusion that we have not 
found something not seen before. The small differences 
between microplate wells are known to all who run duplicates or 

triplicates and considered random. Nearly everyone doing assay 
development knows that different brands of microplates 
generally give different results for the same assay. In most 
instances, the selection of microplate is based on which one 
gives the highest signal. From a practical perspective, our 

PlasmaKnifeÔ Microplate Cleaning System for the first time 
allowed measurement of an individual well’s effect on an assay. 
Such an effect has always been there; however, when it repeats 
it is no longer random. Statistically, the noise measured as 
variation in results in a uniform plate-wide assay, is the sum of 
each well’s unique systemic bias together with random errors: 
accumulation of small differences in pipetting volumes, 
unevenness of cell suspensions, volume differences due to 
evaporation and temperature, and other aspects of the 
processes used that introduce variability. Plate reuse reveals 
the repeatable differences between wells. The software and 
testing plans that we have developed allow precise 
measurement of these important differences.   
 
We originally observed and reported a 30% improvement from 
correcting the bias due to microplate well differences and 
received the frequent comment that this seems high. It also did 
to all of us — at IonField Systems, the National Center for 
Advancing Translational Science (NCATS) at the National 
Institutes of Health, and a major pharmaceutical company. It 
took more than two years of research to gain confidence in our 
understanding of the underlying material science of microplate 
surfaces and how the surfaces cause the effects seen in 
assays.  
 
Understanding Assay Variability 

Assay variability has numerous sources, including pipetting 
variation, non-uniformity of liquids being pipetted, edge effects, 
and temperature non-uniformity. These sources are well 
documented in scientific literature [1]. Historically, when using 
microplates once and disposing, all sources of variability are 
classified statistically as random. Recently, the technical 



2 
 

challenges of cleaning microplates have been solved. That 
triggered a new look at random variation and its sources.  
  
Shortly after introduction of the PlasmaKnife™ Microplate 
Cleaning System, IonField Systems observed that when 
microplates are reused some of the variability was not random 
and recurred repeatedly with every reuse. Experiments 
designed to isolate variability by well position over multiple uses 
showed that individual wells gave the same repeated results 
with very high precision.  Preliminary information on this 
discovery was presented in three posters at SLAS 2018 [2-4] 
and an article in American Laboratory [5]. This report expands 
on the previous publications and presents new data and 
information about reducing variability. 
 
In discovery phase pharmaceutical research, many assays are 
not developed for inherent accuracy. A series of dilutions of the 
same compound are used to identify the concentration having 
the desired modulating effect on a target. Large numbers of 
compounds are compared and less assay variability results in 
a greater differentiation between them. Lower variability offers 
the potential to improve data upon which to base decisions on 
follow-on testing and subsequent selection of molecules or 
biologics for moving into later stages of discovery and 
development.     
 
Assay variability may affect a number of other decisions in the 
discovery process. During assay development, a common 
metric is the number of SDs between high and low controls. 
Too few SDs may render what may be an excellent research 
method, not suitable for high-throughput screening and many 
other applications. Another instance of the effects can be on 
data analysis. As variability is reduced, it allows more of the 
curvilinear portions of sigmoidal response curves to be used, 
thereby increasing the potential dynamic range of an assay.  
To facilitate the ability to reduce variability, IonField Systems 
has developed a predictive analytics program that is simple to 

integrate into data analysis software used in drug discovery. 
The methodology identifies differences between wells, which 
are easily seen visually as patterns in microplates. For 
example, well differences are shown in Figure 1, an image of 
the results from a cell assay with no added compound using 
Be(2)-C (a human neuroblastoma cell line).  

Figure 1 
 

The predictive analytics methodology uses a minimum of two 
sets of assay results as the learning model, identifying each 
well’s repeating pattern or bias for reporting high or low assay 
values relative to other wells, and measuring the variability of 
each well’s results. These well-specific results guide the bias 
prediction for each well upon reuse and can be used to score 
confidence in that prediction versus results from all other wells.   
 

This method does not predict a result, it predicts the effect on 
results of the differences between wells. Applying this method 
using two learning cycles has shown a minimum improvement in 
precision of 30% in both homogenous and cell assays. A recent 
run with a new cell line showed a >50% improvement.  The new 
cell line results may indicate greater sensitivity to the well-to-well 
differences. Testing with more cell lines is planned to determine 
the frequency and likelihood of higher, and potentially, lower 
improvement in results.  
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Addressing Assay Variability 

As part of the development of the IonField System 
PlasmaKnife™ Microplate Cleaning System, testing confirmed 
cleaning effectiveness by comparing the results from a new 
plate to the same plate used a second time. More testing 
confirmed the same result over multiple reuses. Of note, results 
from individual plates in the multiple re-use group indicated 
more consistency compared to a similar analysis of the identical 
assay results from new plates.  
 
To better understand these observed and unexpected results, 
we entered into an informal partnership with the National Center 
for Advancing Translational Sciences (NCATS), National 
Institutes of Health, with the goal of understanding the reason(s) 
for the more consistent results. Our research plan consisted of 
using best available analytic methods to examine microplate 
surface properties, including surface "roughness" and chemical 
composition. Scanning electron micrographs (SEMs) were used 
to assess microplate surface roughness. Based on the 
recommendation of EAG Laboratories, a commercial laboratory 
offering numerous methods of surface chemical testing, we 
selected Time of Flight Secondary Ion Mass Spectrometry (ToF-
SIMS) for the surface chemical assessment. Of interest were 
the chemicals used in production to initialize and control the 
polymerization rate, primary and secondary oxidation, and 
improve polymer characteristics of flow and mold release. 
 
SEM revealed random roughness varying between wells in a 
microplate, between microplates of the same lot, and between 
lots. The SEM photo in Figure 2A shows typical surface 
roughness of a new microplate at extremely high magnification. 
Figure 2B shows a lower magnification perspective where the 
randomness of the surface cannot be seen but more macro 
scale features are. One of our earliest conclusions was that 
surface roughness per se does not directly affect assay results. 
Surface area increases significantly with increasing roughness 
so the net effect of a rougher surface is to expose well contents, 

i.e., assay fluids, to more surface chemicals. The total surface 
area of each well is unique.  

 
Figure  2A 

 
  Figure 2B  
 
Shown in Figure 3 is an analysis from performing a well position 
matrix subtraction of results from two microplates, dividing the 
absolute value by the SD, and grouping the results by 0.1 SD 
(X-axis is a well count, Y-axis is 0.1 SD groups). In this analysis, 
34.5% of wells differ by <0.2 SD and 97.8% differ by <1.0 SD. 
Thus, individual wells are extremely precise run to run.  

 
    Figure 3 
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ToF-SIMS, using positive ion analysis, revealed a large number 
of positive ion species either on or within 1 nm of plate surfaces. 
Three brands of microplate were tested and all had at least 27 
"non-polymer" positive ions. A few ions were unique to a single 
brand; most were common to all brands, varying in 
concentration by brand. Na+ varied 498-fold and Ca++ 2860-
fold. Trace ions, like Pb++, typically had less than a 10-fold 
difference.  
 

 
Figure 4  
 
Figure 4 compares the assay results of three microplate brands 
run with Be(2)-C cells without added compounds. CellTiter-Glo® 
was used to measure the number of cells (Y-axis) and 
luminescence was measured on a ViewLux® (X-axis).  
 
The variation within brand is due to well-to-well differences, 
while the variation between brands shows the effect of chemical 
differences between brands. Cell growth results are clustered by 
brand around a central value. All brands showed a skewing 
toward low values, primarily due to parallax from the ViewLux® 
reader. The three plate groupings confirm the effect of well 
surface chemical differences between brands on assay results.  
The plates were processed as a single batch to normalize any 
other protocol related biases. Plates were run in duplicate. 
 

The data for the three curves in Figure 4 were analyzed 
statistically to determine whether the curve shapes were due to 
exposure to plate chemicals, very small differences in well 
dimension/shape/volume, or other non-random causes. The 
approach used was to compare the data from each well position 
to data from the corresponding well in the paired plate. The 
curve shapes for each pair were identical in this comparison, 
with the well positions on the graph remaining stationary. 
Subsequently, wells were mapped by the SD groups they fell 
into (in Figure 3). Their distribution over the microplate was 
even. 
 
Using the statistical technique of matrix subtraction previously 
described, not only was cell growth rate found to be altered by 
brand, but assay variability differed by brand. For the Blue 
brand, the plate average was 11,860, and 1 SD was 700; 74.1% 
of well results were within 0.5 SD, and 97.8% were within 1.0 
SD. Results for the other brands showed progressively more 
variability, indicating less uniformity between plate pairs. For the 
Red brand (#2), 51.5% of results were within 0.5 SD, and 79.1% 
were within 1.0 SD; 37.7% of results from the Green brand (#3) 
were within 0.5 SD, and 56.9% were within 1.0 SD.  
 
This statistical analysis demonstrates the potential of using 
predictive analytics in methods development to identify optimally 
matched microplates for an assay. The output of the Assay 
Analytics™ software consists of two matrices, one with a bias 
adjustment factor derived from the median value for each well 
pair, and the other scoring the variance of each well. The 
scoring ranks wells based on the difference between results 
used in the learning process. This scoring has application to 
statistical methods such as Least Squares curve fitting that 
analyze data without regard to the measured precision of the 
data.  
 

The predictive analytics method uses the first software matrix to 
make adjustment for well position bias. In the example below in 
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Figure 5, this statistical analysis process yielded a reduction in 
SD of >30% for the Red brand of plate. This brand was used 
because its raw data had the least skew with a distribution more 
typical of results for most assays. 
 

 
Figure 5 
 

The ToF-SIMS data, discussed above, show differences in 
microplate surface chemicals that are intriguing. Once matched 
with assay data, this information establishes a link between 
surface chemicals for each brand and effects on assay results. 
For example, in the Be(2)-C assay in Figures 1, 3, 4, and 5, the  
lower signals from plate brands 2 and 3 are directly correlated to 

a reduced number of live cells detected by CellTiter-Glo®.       
The surface chemical data in Figure 6 indicate that the Blue 
plate brand (#1 in Figure 6) had low concentrations of all surface 
chemicals examined except Ca++. The Red brand (#2) had high 
concentrations of Na+, K+, Ca++, and Al+++. The Green brand 
(#3) had high concentrations of Al+++ and Zn++ and was only 
brand with ethylene bis stearamide (EBS).  
 
Although this experiment was not designed to identify the 
biological processes resulting in lower cell growth rates, it 
demonstrated that low concentrations of chemicals on 
microplates surfaces mix with assay liquids and affect cell 
growth rates and assay results — and could be considered as 
potential “contaminants” to be minimized when selecting the 
microplate for each assay. Preliminary results from 
homogeneous assays using the same predictive analytics 
process show similar improvements in reducing variability and 
need for optimum microplate selection.  
 
We are collaborating with clients to conduct additional 
experiments and expect results later in 2019.

 
                                   Figure 6 
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Key Takeaways 

• Assay results from individual microplates after cleaning and multiple reuse show better consistency compared with results from new plates. 

• Surface chemicals are detectable in varying concentrations across all brands of new microplates and, together with well surface 
“roughness” that increases exposure of well contents to chemicals, can substantially affect assay results. 

• Optimal microplate selection using predictive analytics is a critical first step to assay success. 

• Predictive analysis of result patterns from individual plate wells can substantially reduce assay variability. 

• The IonField Systems predictive analysis process, Assay Analytics™, adjusts assay results using multiple actual measurements from each 
well to yield a more precise correction than methods using estimated variance or correction factors.   

• This novel predictive process yields improvements in assay precision, routinely achieving a 30% reduction in SD.   

• The method described will likely be effective for identifying and correcting other sources of repeating assay variability.  

• Because it does not require any modification to assay reagents or methods, measurement modality, or instrumentation, the method is 
simple to implement.  

• Repeated use of cleaned plates eliminates the risks associated with assay results shifting when changing lot numbers of microplates and 
helps insure optimum long-term assay stability.
 
 

References  

1. Assay Guidance Manual. Sittampalam GS, et al, Eds. https://www.ncbi.nlm.nih.gov/books/NBK53196. Accessed Jan 28, 2019.     
2. Hensley P, Kunz S. A new method to improve microplate selection criteria for cell assays. Poster presented at SLAS 2018. 
3. Hensley P, Kunz S. Microplate surface compounds that affect assays and removed by plasma cleaning. Poster presented at SLAS 

2018. 
4. Hensley P, Kunz S. AI-based data analysis method that improves cell assay results. Poster presented at SLAS 2018. 
5. Hensley P. Reducing microplate result variability using an AI-based approach. American Laboratory.  2018; August 7. 

 
CellTiter-Glo® and ViewLux® are registered trademarks of Promega and PerkinElmer, respectively. Assay Analytics™ is a trademark of 
IonField Systems. Colors for each brand of plate brand were randomly assigned. 
 
Author Information 

Paul Hensley is the CEO of IonField Systems, and was the founder and CEO of Cerionx, which first brought atmospheric pressure plasma 
cleaning products for the life science laboratory to market. Earlier in his career, Mr. Hensley held management positions at Beckman 
Instruments and the Zymark Corporation.  
 

 


